| Subject: Computing                                                                   | Year: 6 – Summer 2 – Programming B – Sensing                                                                                                                      |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| National Curriculum objectives                                                       |                                                                                                                                                                   |  |  |  |  |  |  |  |
| <ul> <li>Design, write and debug programs that accomplish specific goal</li> </ul>   | s, including controlling or simulating physical systems; solve problems by decomposing them into                                                                  |  |  |  |  |  |  |  |
| smaller parts;                                                                       |                                                                                                                                                                   |  |  |  |  |  |  |  |
| <ul> <li>Use sequence, selection, and repetition in programs; work with</li> </ul>   | <ul> <li>Use sequence, selection, and repetition in programs; work with variables and various forms of input and output;</li> </ul>                               |  |  |  |  |  |  |  |
| <ul> <li>Use logical reasoning to explain how some simple algorithms we</li> </ul>   | <ul> <li>Use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs;</li> </ul>                 |  |  |  |  |  |  |  |
| <ul> <li>Select, use and combine a variety of software (including interne</li> </ul> | • Select, use and combine a variety of software (including internet services) on a range of digital devices to design and create a range of programs, systems and |  |  |  |  |  |  |  |
| content that accomplish given goals, including collecting, analys                    | ing, evaluating and presenting data and information.                                                                                                              |  |  |  |  |  |  |  |
| To begin this unit, the children should have already learnt:                         | The learning in this unit will prepare the children to learn these things in the future:                                                                          |  |  |  |  |  |  |  |
| <u>Year 1 – Moving a Robot (Spring 1)</u>                                            | National Curriculum Objectives at KS3:                                                                                                                            |  |  |  |  |  |  |  |
| Floor robots have buttons which help us to direct them. We can use                   | <ul> <li>Design, use and evaluate computational abstractions that model the state and behaviour</li> </ul>                                                        |  |  |  |  |  |  |  |
| algorithms (a set of guidelines to perform a task) to program floor                  | of real-world problems and physical systems;                                                                                                                      |  |  |  |  |  |  |  |
| robots along routes.                                                                 | Understand several key algorithms that reflect computational thinking [for example, ones                                                                          |  |  |  |  |  |  |  |
|                                                                                      | for sorting and searching]; use logical reasoning to compare the utility of alternative                                                                           |  |  |  |  |  |  |  |
| <u>Year 1 – Introduction to Animation (Summer 2)</u>                                 | algorithms for the same problem;                                                                                                                                  |  |  |  |  |  |  |  |
| Programming is when we make a set of instructions for computers to                   | <ul> <li>Understand the hardware and software components that make up computer systems, and</li> </ul>                                                            |  |  |  |  |  |  |  |
| follow. <i>ScratchJr</i> is a program that we can use in order to code our           | how they communicate with one another and with other systems;                                                                                                     |  |  |  |  |  |  |  |
| own stories and animations.                                                          | <ul> <li>Understand how instructions are stored and executed within a computer system;</li> </ul>                                                                 |  |  |  |  |  |  |  |
|                                                                                      | understand how data of various types (including text, sounds and pictures) can be                                                                                 |  |  |  |  |  |  |  |
| <u>Year 2</u>                                                                        | represented and manipulated digitally, in the form of binary digits;                                                                                              |  |  |  |  |  |  |  |
| We can create simple quizzes in <i>ScratchJr</i> where the user can select an        | <ul> <li>Undertake creative projects that involve selecting, using, and combining multiple</li> </ul>                                                             |  |  |  |  |  |  |  |
| answer by clicking on a sprite. An outcome occurs when the sprite is                 | applications, preferably across a range of devices, to achieve challenging goals, including                                                                       |  |  |  |  |  |  |  |
| clicked.                                                                             | collecting and analysing data and meeting the needs of known users;                                                                                               |  |  |  |  |  |  |  |
|                                                                                      | <ul> <li>create, re-use, revise and re-purpose digital artefacts for a given audience, with attention</li> </ul>                                                  |  |  |  |  |  |  |  |
| <u>Year 3</u>                                                                        | to trustworthiness, design and usability;                                                                                                                         |  |  |  |  |  |  |  |
| We can use event and action command blocks in order to make                          | <ul> <li>Understand a range of ways to use technology safely, respectfully, responsibly and</li> </ul>                                                            |  |  |  |  |  |  |  |
| sprites carry out actions when certain prompts take place. Algorithms                | securely, including protecting their online identity and privacy; recognise inappropriate                                                                         |  |  |  |  |  |  |  |
| (a set of instructions to perform a task) allow us to sequence                       | content, contact and conduct and know how to report concerns.                                                                                                     |  |  |  |  |  |  |  |
| movements, actions and sounds in order to program effective                          |                                                                                                                                                                   |  |  |  |  |  |  |  |
| animations.                                                                          |                                                                                                                                                                   |  |  |  |  |  |  |  |
|                                                                                      |                                                                                                                                                                   |  |  |  |  |  |  |  |
| <u>Year 4</u><br>Count controlled and infinite loops are by and to prove the diffe   |                                                                                                                                                                   |  |  |  |  |  |  |  |
| Count-controlled and infinite loops can be used to create different                  |                                                                                                                                                                   |  |  |  |  |  |  |  |
| examples of repetition in games: using repeat and loop operator                      |                                                                                                                                                                   |  |  |  |  |  |  |  |
| blocks in <i>ScratchJr</i> can make our programs more logical and efficient.         |                                                                                                                                                                   |  |  |  |  |  |  |  |
|                                                                                      |                                                                                                                                                                   |  |  |  |  |  |  |  |
|                                                                                      |                                                                                                                                                                   |  |  |  |  |  |  |  |

| Year 5                                                                                                                                             |                                                                                                |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|--|
| Conditions' can be used in programming: the 'if then else'                                                                                         |                                                                                                |  |  |  |  |
| structure can be used to select different outcomes depending on                                                                                    |                                                                                                |  |  |  |  |
| whether a condition is 'true' or 'false'.                                                                                                          |                                                                                                |  |  |  |  |
| Key Enquiry Question                                                                                                                               | The Big Idea:                                                                                  |  |  |  |  |
| What is a micro:bit? How can emulators help programmers? When                                                                                      | Micro:bits are small computers that perform different actions based on programs written on     |  |  |  |  |
| might 'if then else' statements be used in the real-world? What                                                                                    | computer software. Programs are then downloaded to the micro:bit. Micro:bits have a range of   |  |  |  |  |
| happen if you change the value of a variable? How do operands                                                                                      | input sensors that can be used as input triggers for different codes to run. Output devices on |  |  |  |  |
| determine the flow of a program? How tools can you use to check the                                                                                | Micro:bits (e.g. LED displays) can be programmed to display words, pictures and numbers.       |  |  |  |  |
| success of your step counter?                                                                                                                      |                                                                                                |  |  |  |  |
| To achieve ARE, pupils will need to be secure in the following knowledge:                                                                          |                                                                                                |  |  |  |  |
|                                                                                                                                                    |                                                                                                |  |  |  |  |
| By the end of this unit, children will know:                                                                                                       | Vocabulary:                                                                                    |  |  |  |  |
| <ul> <li>A 'variable' as something that is changeable;</li> </ul>                                                                                  |                                                                                                |  |  |  |  |
| • Examples of information that is variable, e.g. a football score                                                                                  | Programming; Scratch Jr.; command; algorithm; sprite; home; block; stage; background; app      |  |  |  |  |
| during a match;                                                                                                                                    | (introduced in Y1).                                                                            |  |  |  |  |
| <ul> <li>A variable can be used in a program;</li> </ul>                                                                                           |                                                                                                |  |  |  |  |
| • A program variable as a placeholder in memory for a single value;                                                                                | Sequence; quiz; debugging (introduced in Y2).                                                  |  |  |  |  |
| <ul> <li>A variable has a name and a value;</li> </ul>                                                                                             |                                                                                                |  |  |  |  |
| <ul> <li>The value of a variable can be used by a program;</li> </ul>                                                                              | Code: events: motion: trialling (introduced in Y3).                                            |  |  |  |  |
| <ul> <li>The value of a variable can be updated;</li> </ul>                                                                                        |                                                                                                |  |  |  |  |
| <ul> <li>Variables can hold numbers or letters;</li> </ul>                                                                                         | Logical: condition: selection (introduced in Y5)                                               |  |  |  |  |
| <ul> <li>Variable can be set as a constant (fixed value);</li> </ul>                                                                               |                                                                                                |  |  |  |  |
| <ul> <li>The importance of setting up a variable at the start of a program<br/>(initialization);</li> </ul>                                        | Micro:bit; LED; accelerometer; sequence; emulator; motion.                                     |  |  |  |  |
| (IIIIIIdiisdiioii);<br>There is only one value for a variable at a given time:                                                                     |                                                                                                |  |  |  |  |
| <ul> <li>Intere is only one value for a variable at a given time;</li> <li>If you change the value of a variable, you cannot access the</li> </ul> |                                                                                                |  |  |  |  |
| <ul> <li>If you change the value of a variable, you cannot access the<br/>previous value (capnot undo);</li> </ul>                                 |                                                                                                |  |  |  |  |
| vou read a variable, the value:                                                                                                                    |                                                                                                |  |  |  |  |
| <ul> <li>The name of the variable is meaningless to the computer:</li> </ul>                                                                       |                                                                                                |  |  |  |  |
| The name of a variable needs to be unique                                                                                                          |                                                                                                |  |  |  |  |
| • The name of a variable needs to be unique.                                                                                                       | 1                                                                                              |  |  |  |  |



# COMPUTING: PROGRAMMING KNOWLEDGE ORGANISEI

#### Overview



## Using Micro:bits

 Programming is when we make a set of instructions for computers to follow.

-Micro:bits are small computers that perform different actions based on programs written on computer software. Programs are then downloaded to the micro;bit.

 Micro:bits have a range of input sensors that can be used as input triggers for different codes to run.

-Output devices on Micro:bits (e.g. LED displays) can be programmed to display words, pictures and numbers.

ensor

12. Processor - The 'brain' of the device.

other micro; bits and devices.

computer. 10. Reset Button

11. Battery Socket - to power

away from the computer.

## The Basics of Micro:bits

-What is a Micro:bit? A micro:bit is a pocket-sized computer. We can write programs on our computers which can then be transferred to micro:bits to run.

-Micro:bits have an LED light display, buttons, sensors and many input/output features that we can program.

## The Parts of a Micro:bit - Front



2. LED Display: shows words, pictures, numbers.

Light Sensor: Measures the light that falls onto the micro bit.

4.Input and Output Pins: Connects the micro:bit to other devices.

| 5. Temperature   |
|------------------|
| 6. Compass       |
| 7. Accelerometer |
|                  |





USB Port – Connects device to



### Using Micro:bit Software

-Software Interface: Just like other programming software, the micro:bit interface has programming blocks and a programming area. The emulator gives a simulation for testing code.

-Basic Blocks: Can be used to do things like display images, text and pictures on the LED display. They should be placed into the 'on start' or 'forever' blocks.

-Input Blocks: Enables the user to create 'triggers' using different parts of the micro:bit device, e.g. 'on button ... pressed.'

-Logic Blocks: Allow conditions to be set. E.g. 'If, then, else' blocks allow us to set actions for when certain conditions are met (true), and alternative actions for when they are not met (false).

-Math Blocks: Includes numbers and sums in programs. The 'pick random number' block can allow different codes to run dependent on the random number generated.

| Transferring to Micro:bit                                                                                                                                                          | Sensing Inputs                                                                                                                      |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Micro:bit can be connected to the computer using a USB cable.                                                                                                                      | -There are a number of input sensors on<br>micro:bits, including the buttons, light<br>sensor, accelerometer, compass,              |  |  |  |
| <ol> <li>Select 'download'</li> <li>Locate the file in the downloads folder.</li> <li>Copy the file from the MICROBIT drive.</li> <li>Run the program on the micro:bit.</li> </ol> | temperature sensor and GPIO pins.<br>-We can create<br><u>algorithms</u> that<br>enable different<br>codes to run<br>depending upon |  |  |  |
| -Micro:bit will only run code that has been                                                                                                                                        | what is detected by different sensors.                                                                                              |  |  |  |
| downloaded. If code is changed in the editor,                                                                                                                                      | -Remember to trial your programs and to                                                                                             |  |  |  |
| it will need to be downloaded again in order                                                                                                                                       | debug them if there are sequence, keying,                                                                                           |  |  |  |
| to run on the micro:bit.                                                                                                                                                           | or logical errors.                                                                                                                  |  |  |  |





Input



|   |             |           |     | l l    | Important Vocabi | lary      |               |          |          |        |
|---|-------------|-----------|-----|--------|------------------|-----------|---------------|----------|----------|--------|
| ĺ | Programming | Micro:bit | LED | Sensor | Random           | Condition | Accelerometer | Sequence | Emulator | Motion |

V6